大家好,今天给各位分享单纯形法的一些知识,其中也会对什么是单纯形法进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!
线性规划单纯形法基本思想和步骤
单纯形法是一种多变量函数的寻优方法,其主要思想是先找一个基本可行解,判断是否为最优解,如果不是则找另外一个解,再进行判定,如此迭代运算,直至找到最优解或者判定其无界。
单纯形法的特点
单纯形法是一种直接、快速的搜索最小值方法,其优点是对目标函数的解析性没有要求,收敛速度快,适用面较广。
单纯形法的一般解题步骤可归纳如下:
1.把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。
2.若基本可行解不存在,即约束条件有矛盾,则问题无解。
3.若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
4.按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。
5.若迭代过程中发现问题的目标函数值无界,则终止迭代。
什么是单纯形法
基本含义:
单纯形法是求解线性规划问题最常用、最有效的算法之一。
单纯形法最早由GeorgeDantzig于1947年提出,近70年来,虽有许多变形体已经开发,但却保持着同样的基本观念。
如果线性规划问题的最优解存在,则一定可以在其可行区域的顶点中找到。基于此,单纯形法的基本思路是:先找出可行域的一个顶点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一顶点,并使目标函数值更优;如此下去,直到找到某最优解为止。
运筹学单纯形法如何求最优解
出现-1的话,必须两边同时乘上-1(记得改变符号),因为如果要用单纯形法解题,就必须保证b>0(当然,对偶单纯形法另说)。这道题,我个人算出来是没有最优解的,因为经过两次迭代,最终出现其中一个检验数为正,但其变量系数却全为负,一旦出现这种情况,只能说明此题没有最优解,要么就是我算错了。以上有不明白或不正确之处,还望指出~
单纯形法前提
单纯形法
一般线性规划问题中当线性方程组的变量数大于方程个数,这时会有不定数量的解,而单纯形法是求解线性规划问题的通用方法。
具体步骤是,从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。通过优化迭代,直到目标函数实现最大或最小值。
换而言之,单纯形法就是秉承“保证每一次迭代比前一次更优”的基本思想:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进后更优的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解,也可用此法判别。
关于单纯形法的内容到此结束,希望对大家有所帮助。